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ELASTIC-PLASTIC ANTI-PLANE PROBLEMS FOR BONDED
DISSIMILAR MEDIA CONTAINING CRACKS AND

CAVITIES*

F, ERDOGAN

Lehigh University, Bethlehem, Pa.

Abstract-The problem of two bonded semi-infinite media with different properties containing cracks or
cavities on the interface and subjected to longitudinal shear loads in various ways is considered. The elastic
solution in which only the z-component of the external loads is taken into account, complements the plane
strain problem where the external loads lie in .q-plane. Using the approach of the dislocation theory to plastic
deformations, a simple technique based on the elastic theory is developed to estimate the size of the plastic
zone in the neighborhood of cracks and cavities. Some examples are worked out and a list of solutions is given
in the Appendix.
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end points of bonds or cracks
tractions on the crack surface
relative displacement on y = 0
crack tip displacement
stress intensity factor

bonding segments
complement of L
external load
plastic zone size
cartesian coordinates
end points of plastic zones
shear moduli
complex variables
mapping function
sectionally holomorphic functions
yield stress on the interface
shear stresses

1. INTRODUCTION

RECENT interest and developments in fracture mechanics have attracted considerable
attention to the calculation of stress singularities and plastic deformations in materials
containing cracks, sharp notches and other stress raisers (for survey and references, see:
[1-3]). There have also been some studies on the singular character of the stresses [4,5],
as well as the stress distributions [6,7] in bonded dissimilar media with cracks. The elastic
anti-plane problem, or the problem of longitundinal shear of homogeneous cylindrical

* The results presented here were obtained in the course of research supported by a grant from NSF (GP­
3200).
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bodies has been considered, among others, in [8 through 11]. Aside from its direct appli­
cation to the torsion of cylindrical bars, the solution of this problem complements that
of plane strain where all the external loads, which are independent of z, lie in the xy-plane.
In [8] and [9] the problem is solved by mapping the infinite plane containing the imper­
fection outside the unit circle and using a complex potential whereas in [10] and [11] the
approach of dislocations is used.

If the stress raiser is a sharp notch with an angle a < 11:, the stresses will have a singu­
larity at the vertex of the notch which in anti-plane problems is of the order of
r- [(,. -1l)/(2,. -Il)], r being the distance from the vertex. Thus, in the presence of sharp notches

as well as the stress raisers with finite radius of curvature under sufficiently high loads,
some plastic deformations will take place in the neighborhood of the points of singularity
or stress concentration. In [12-15] the plasticity problem is treated by using the field
approach with maximum shear as the yield criterion [12, 13, 141 or a nonlinear stress­
strain relation [15]. The solution given in [12] is significant in that it contains numerical
results based on an exact solution. In [16-19] the anti-plane plasticity problem for an
infinite homogeneous medium with cracks is treated by using the approach of dislocations.
It is assumed that the plastic deformations in the neighborhood of crack tips may be
represented by an array of screw dislocations coplanar with the crack.

In this paper we first consider the general anti-plane elastic problem for two bonded
dissimilar media containing cracks or cavities on the interface. This solution will comple­
ment the plane strain problem for bonded materials given in [6] and [7]. After pointing
out the equivalency of the formulations obtained through the use of dislocations and that
of this paper, we next consider the general plasticity problem for the bonded dissimilar
media with cracks and/or cavities subjected to longitudinal shear loads in various ways.
A simple expression for the plastic zone size in terms of stress intensity factor valid for
small ratios of applied-to-yield stress is derived. The notch-root-displacement fracture
criterion used in [16-19] is considered for the bonded materials, its equivalency to
Irwin-Orowan theory is shown and a simple form of the criterion in terms of stress
intensity factor is derived. It is indicated that for J1l = J12' J1i being the shear moduli of
the bonded media, the results of this paper reduce to those found for homogeneous
materials whenever available [e.g. 9, 10, 11, 16].

2. THE ELASTIC THEORY

Consider an infinitely long cylindrical elastic body with its generators parallel to Z

direction. Let the specified external loads and displacements be parallel to the z axis and
independent of the z coordinate. If J1 is the shear modulus, the displacements and stresses
may be written as

u = 0, v = 0, w = w(x,y),

OW
t yz = J1 oy'

OW
't'xz = J1 ox .

(1)

The equilibrium conditions give V2w = °and in terms of an analytic function f(O,
, = x+iy, we may write

w = Ref«(), (2)
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Now, let two semi-infinite elastic media with shear moduli fJ.t and fJ.2 occupy the lower
and upper-half planes S- and S+, respectively and be bonded along the strips L t , ... ,L"
on the x axis with L = 1:" Lt. Let L' = 1: Li be the complement on L with Li representing
the cracks on the interface. In addition to the loads at infinity consider the foHowing
general boundary conditions:

Wi-wi := h(t), tEL

'tlyz(t)=gt(t), tEL' (3)

'tiyz(t) := g2(t), tEL'

where h, gt, g2 are known functions, subscripts 1 and 2 refer to lower and upper-half
planes and t is the coordinate along the real axis. Let the functions 11«() and 12«() be
analytic in S- and S+, respectively. Defining the functions 0 1 and O2 we extend the
definition ofJ~ and/~ into S+ and S- in such a way that they are holomorphic on the
unloaded parts of the real axis:

° _{12K) (ES+
iO - J2«() ( E s- (4)

Noting that 'riyAt) = 'riyz(t) for tEL and using second and third equations of (3) we
may write

which gives

[llto t(t)+fJ.20 t(t)]-[fJ.tO i(t)+1l20 2(t)] := 2i(gt-g2) tEL'

= 0 tEL
(5)

(6)

(7)

where P(O is an arbitrary analytic function consistent with the behavior of at and
O2 at infinity and is zero if the stress state at infinity vanisbes. Substituting from (6), first
and second equations of (3) become

2 H+(t)+H-(t)
ot(t)+Ol(t) = 112 h'(t)+ = p(t), tEL

Ilt +112 fJ.t +112

ot(t)-Oi(t) =~ gt(t), tEL'.
JJ.1

First we give the solution of the Hilbert problem, (7), for the case of finite L. At
infinity since the stress state vanishes by (2) and (4) 0 1 and O2, and as a result, the arbi­
trary polynomial P(O wiU be zero. If the bonds L. have the finite ends a•• bt , (k = 1, ... , n),
and if we define

"R(O = O«(-ak)-t({-bt)-t.
1

The solution of (7) may be written as [20]

0t(O = R«()f p(t)dt + R«()f 2i gt(t)dt +N«()R(O
2ni· L R(t)(t-() 2ni L' JJ.t R(t)(t-()

(8)

(9)
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where N(O is an arbitrary polynomial consistent with the behavior of °1(0 at infinity.
In (9) the particular branch of R(O for which lim (nR(O = 1 is considered and the branch

s-t ,'£)

cut is taken along L, hence R+(t) = R-(t), tEL', and R+(t) = -R-(t), tEL, with
R(t) = R +(t).

Since 0 1 vanishes at infinity N(O may be written as

N(O = An_l(n-l+ .. .+Ao· (10)

From (9) and (10) it follows that as ( ~ 00 0 1 behaves as An - d(. Observing that the
resultant force, T, acting on an arc AB in S- may be expressed as

B B

T = fA (r lxz dy-r lyz dx) = 1m fA)1d~(O d(

the constant An - l becomes

T
An - l = --- (11)

n)11
where T is now the resultant force acting on S- at infinity. The remaining n-1 constants
in (10) are determined from the single-valuedness of displacements. The first equation of
(7) is the statement of the continuity of the derivatives of w1 and W z along L; i.e. it implies
that Wi-wi = h(t)+dk , tELk , k = 1, .. . ,n, where the arbitrary constants dk must all
vanish. Arbitrarily fixing the first to be zero, the conditions dz = ... = dn = 0 become

f
Ok fOk
bk- I [ot (t) +0i(t)] dt = bk-1 pet), (k = 2, ... ,n) (12)

which gives a system of n-l linear equations in An - 2 , .. ·, A o.
After 01(0 is determined, equations (2) with (4) and (6) gives the solution. In particular

the contact stresses on the bonds are obtained from

tEL. (13)

(14)

If L is infinite we let ak , bk stand for the finite ends of the crack Lk, (k = 1, ... , n),
and define a function R(O as in (8) with the same properties. Now defining a sectionally
holomorphic function G(O, by taking the branch cut along L' instead of Las

{
01(~) (E S­

G(') =
-01(0 (ES+

the solution may be written as

G(() = _ R(O! p(t)dt _ 2i R(()j gl(t)dt +M(()R(()
2ni LR(t)(t-O )112ni cR(t)(t-O

where

(15)

and since the stress state at infinity is bounded the arbitrary polynomial M(G is, at the
most, of degree n :

(16)
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The constant An is determined from the stress state at infinity. For example if'rfxz = t~xz

= 0, tfyz = t~yZ = q = constant we have An = -iq/J.Ll' The remaining constants in (16)
are again determined from the condition of single-valuedness of displacements which,
by using a similar argument as before, may be written as

k = 1, ... , n. (17)

The solution given by (9) indicates that in the neighborhood of a crack tip, b j , we may
write

f~(() = F(W( -bj)-t

F(() being a holomorphic function. Defining (- bj = pei6
, - n < () < 0, from (2) it follows

that for small values of p the stresses may be expressed as*

- (b) -t . ~'r 1 yz - J.L 1F j p sm 2. (18)

(19)

The constant F(b) depends on J.L2' (i.e. the stresses in S- are affected by the difference
between the shear moduli of the adjoining media), only if the external loads are not
symmetric with respect to xz-plane (see the examples and the conclusions~ The constant
k = J.L1F(b j ) is known as the stress intensity factor at bj •

s y

"1 = r + is t = II + iy

I+ (1Lz) s+

L.'+

r L L'- II

rV"I) s-

(T z

FIG. 1. Bonded plane with cavity mapped on a plane with slit.

The procedure outlined above can also be used to solve the problem of two bonded
semi-infinite media containing cavities rather than cracks on the interface provided the
cavities are symmetric with respect to ra-plane (Fig. 1) and the proper mapping functions
can be found. Referring to Fig. 1, the problem may be formulated as

V2 w1(r,s) = ° 11E~-, V2wk,s) = ° 11E~+,

w1(r)-wi(r) = F(r) r E r
'r1na(110) = Pl(r, s) 110 E Y

rintr(11o) = p2(r,s) 11o E Y+

with the proper conditions at infinity. Assume that an analytic function '1 = w«) is found
which conformally maps the ~ plane into S plane in such a way that ~+, ~ -, Y+, Y-, r
are mapped onto S+, S-, L'+, L'-, L and com --> ( as ( --> 00. The harmonic functions

* For a similar result in the general mixed boundary-value problems see [21] theorem 2.
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WI' W2 will remain harmonic in , = x+iy plane. Noting that on a surface with outward
normal n in rs-plane the shear stress acting in (1 direction is given by

oW
T".. = J.t on

and using the definition of directional derivatives (19) may be written as

V2
W I(X,y)=0 'ES-, V2

W 2(X,y)=0 'ES+,

w1(t)-wi(t) . h(t) tEL

tEL'

tEL'

(20)

(21)tEL.rEr,

where functions g l(t), g2(t) and h(t) are obtained from the known functions PI' P2 and F.
We call (20) the "equivalent longitudinal shear" problem the solution of which is ob­
tained from (9) or (15) by simply replacing gl and g2 by IW'1g1 and IW'1g2' Note that, since
W(O -, as' - 00, (Ttr.. +iTb..) - (tk.xz+ itkyz), k = 1,2, as' - 00 and the contact stresses
may be written as

_ (OWl) - 1 _
t ts..(r) = J.tl os = lw'(t)l t lyz(t),

3. RELATION TO DISLOCATIONS AND PLASTIC DEFORMATIONS

For the semi-infinite medium y < 0 subjected to longitudinal shear under a line load
T(per unit thickness) acting at y = 0, x = to the solution may be written as

f~(') = (~o1tJ.tl 0-

from which we obtain

where w';(t) is the value of ow/ox on the real axis as y goes to zero from below. Now, in­
stead of acting at a point if the external loads are distributed on the real axis with a
density gl(tO) which is square-integrable in (-00, (0), we may write

W; (t) = fro gl(tO) dto .
_ro nJ.t1 (to -t)

Taking the Hilbert transform of (22) we obtain

(22)

(23)
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If we now consider a homogeneous infinite medium containing a series of cuts
L'1"'" L~ along the real axis on the surfaces of which the shear traction g1(t) is applied,
because of symmetry on the remainder L of the real axis we have w; = w; = 0 and (23)
becomes

(24)

(25)

This is the well-known equation for the medium containing an array of screw disloca­
tions along the real axis assumed to be smeared over L' and having a density
w; -w; = -2w; [10,11]. If g1 is given, it can easily be shown that the solution of the
integral equation (24), and hence, the problem may be written as

w;(t) = -t(G+ -G-) = G-(t)

1. 1 -f - 2w; dt
-('t'xz-I't'yz) = G(O = -2. t-(
Jl1 . m L'

where G«() is obtained from (15) by substituting g2 = g1 and Jl2 = Jl1' It is seen that this is
a special case of the more general problem considered in the pJ;evious section.

Noting that the .crack tips; at and bt , are points of stress singularity in the neighbor­
hood of these points plastic deformations are expected to take place. If we adopt the
model for these deformations as being the result of an array of screw dislocations dis­
tributed ahead of the crack tip on the slip plane which is coplanar with the crack and
assume that slip takes place under a constant yield stress in shear, the size of the plastic
zone can easily be calculated [16-19l This is done by writing the condition of equilibrium
for the dislocations, i.e. requiring that the resultant force on any dislocation in the dis­
tribution is zero [22l In the terminology of continuum mechanics, this procedure is
completely equivalent to the following: If aj' bj (bj > a) are the crack tips and (Xj' Pj

refer to the ends of plastic zones (on the x axis) (Xj' Pj are determined from the requirement
that in the medium cut along (Xj < x < Pj , (j = 1, ... , n, the stress intensity factors
k«(X), k(pj ) calculated from the external loads and from the constant tractions 't';' = 't';
= 't'o ('t'o being the yield stress in shear) applied along (Xk < X < ak, bk < x < Pt in the
direction opposing the external loads cancel each other. The defect of this idealized
model that the displacement is not continuous in the plastic zone may be overcome by
assuming that ahead of the crack the slip takes place in a thin strip, - (j < y < (j. If the
strip is thin enough it would not have any significant effect on the calculation of the
plastic zone size based on the distributed screw dislocations and, by specifying its thick­
ness, the magnitude of plastic strains may be calculated.

Thus establishing that in longitudinal shear problems the dislocation approach to
plastic deformations is equivalent to a simple continuum approach requiring only
elastic solutions, we may now free ourselves from the restrictions imposed by the former
approach as to the symmetry in loading and geometry, and the homogeneity of the
medium Particularly it now becomes possible to calculate the plastic deformations (in
the weaker of the base media or the bond material) in the bonded dissimilar materials
containing cracks or cavities on the interface. Furthermore, if the bond material (or a
thin layer of composite material on the interface) has the lowest yield stress in shear,
knowing the thickness and the total relative displacement, w+ - w-, the plastic strains and
the values of external loads corresponding to rupture strain can be evaluated.
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4. EXAMPLES

As a simple example consider the case of the bonded media with a central crack,
L' = (-a, a). Let the stress state at infinity and the relative displacement h(t) on L be
zero and the shear stress on the crack surface be g(t) = qo = constant. From (15), (16)
and (17) we obtain

G(O = - iQo [1- (R(m,
III

and (13) and (14) give the contact stress as

'lyAt) = qo [1- J(t2
t
_ a2J' (t > a). (26)

By superimposing a uniform shear, Iyz = qo on the negative of (26), the contact stress for
the bonded plane under uniform shear at infinity, ,~z = qo, and free of tractions on the
crack surface may be obtained as*

(27)(t > a).
_ qot

'Iyz(t) = J(t2 _ a2l'

To obtain the plastic zone size, a - a (Fig. 2), we assume that the crack extends to
±a and write the total stress intensity factor obtained for the loads qo and yield value
of the shear '0 (corresponding to the weaker of the joining media or the bonding agent)
acting on the part of the crack surfaces, - a < t < - a and a < t < a, equal to zero.

FIG. 2. Bonded plane with central crack.

For the loading by '0 (15) gives

G(O = _i,_o [ 2 (~-arcsin~)-n-iIOg-(C---,-Y_)(_l_+_CY_)J
nil I J((2_ a2) 2 a (c+y)(l-cy)

c = [(a+a)/(a-ant , y = [(a+O!(a-(nt

'0 { 2t (n . a)-~ --arCSIn - -n
n (t 2 - a2)t 2 a

[
(t+a)(a+a)]t 2 [(t+cx)(a-a)]t}- 2 arctan + arctan .
(t-~~-~ (t-~~+~

(28)

* In thIs as well as other examples given in this paper note that the sign of R(t) changes as t goes over each
branch cut.
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Replacing a by IX in (27) and adding to (28) we obtain the contact stress corresponding to
elastic-plastic deformations. Defining the stress intensity factor as

k = lim (t-IX)1-T1yz(t)
t_",

the condition that for the elastic-plastic case k = 0 gives

~ = cos ('!:. qo) . (29)
!Y. 2 To

Here we note that because of symmetry the result is independent of the material pro­
perties and is the same as that found earlier by using the dislocation approach [16].
To compare this simple result with a known solution based on the field approach to
plasticity obtained in [12], where a numerical solution for an edge crack is given, we
observe that in the example under consideration, again because of symmetry, the yz­
plane is stress-free. Hence (29) also provides a solution for a semi-infinite medium with an
edge crack of length a and subjected to constant shear, T~ = qo, at infinity (or the torsion
of a circular bar containing a longitudinal surface crack the depth of which is very small
compared to the diameter of the bar). The results reproduced from Fig. 2 of [12] and (29)
are shown in Fig. 3. The apparent agreement found for this example indicates that the

1·6,---,--,..---,---,.-----,

1·4

1·2
(ot-ol/.

a
1·0

0·8

0·6

0·4

0·2

Eq.(29)

Ref. [12]

o .0.4 06 ()O8 1·0
qat

To

FIG. 3. Size of the yield zone in the plane of the crack.

simple technique described above, which is essentially based on dislocations, may be used
to estimate the plastic zone size.*

* For a similar approach to calculate the plastic zone size in plane problems and comparison with experi­
mental results, see [23l
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If we define the plastic zone size as p = a-a, for qo ~ 'to (or in the more general case
of relatively small external loads leading to p ~ a) from (29) we may write

(30)

(31)

(32)

Since in mdst ptoblems the elastIc-plastic analysis is too complicated to lead to a closed
form solution for p, equation (30), which requires only the elastic solution, may be of
considerable practical importance in the estimation of the plastic zone size.

In the application of the results to fracture of materials a quantity which plays an
important role is the displacement at the tip of the crack. It has been shown that a critical
value of this displacement multiplied by the yield stress in shear is equivalent to the
(plastic) work required to increase the area of the crack by a unit length in the Griffith­
Irwin-Orowan theory of quasi-brittle fracture [16, 17, see also the discussion at the end
of this paperl In the bonded media the relative displacement along the crack and in the
plastic zone may be obtained from

wi-wi =h(t) =JJ1.1 +/12[G-(t)~G+(t)]dt
2/12

with the appropriate integration constant insuring that h( ±a) = O. In (31) G(O is the total
solution (for S-), i.e. it is the sum of the solutions due to the external loads and 'to acting
along the yield zones. For the example under consideration we obtain

'to /11 + /12 r( 1 1) f) - c ( c
2 1)

h(t) = --; /11/12 2a L(2 + 1- f)2 + 1 log f)+c + c2+ 1- f)2 + 1

I cf)+ IJ. og-f)- (= [(IX+a)/(IX-a)]!, f) = [(IX+t)/(IX-t)]!.
( -1

For (qo/'to) = j the variation of the relative displacement h(t) with tla and /121/11 is
shown in Fig. 4. In the more general case of non-symmetrical loading the calculation of IX

as well as h(t) may be somewhat laborious. If qo/'to is sufficiently small, in this case too
the concept of strength of the stress singularity may be effectively used. For this we first

2·0,...-------------------,

1·0F=====::::::­
fIol h (t)

TO a

oL-..l-....l-.....l.--...L-~~--J
o "0 2·0

tla
FIG. 4. Relative displacement on the crack surface and the yield zone.
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note that the important quan~ity employed in the fracture criterion is the value of the
relative displacement at the crack tip which for the present example is found to be*

h(a) = -2a to /l1 +/l210g~.
1t /l1/12 a

For small values of qo/to from (33), (29) and (30) an approximation to the absolute value
of crack tip displacement may be obtained as

h(a) ~ ~pt/l + /12 = -.!!.-- /11 + /12 P (34)
1t /11/12 2to /11/12

where the stress intensity factor, k, at t = a is defined by

k = lim J(t-a)t1yz(t).
t-+a

Figure 5 shows the variation of h(a) in /12//11 and qo/tO' The figure also shows the
approximate value of h(a) obtained from (34) and the relative error. Thus, for example

(I£z)

2

iLl h (a)

'fo a

F1G. 5. Crack tip displacement

if a relative error of 10 per cent is permissible in the evaluation of h(a), up to qo/to = 0·46
(34) may be used to calculate h(a) without going through a lengthy process of obtaining
the plastic zone size. It may easily be shown that for III = 112 the foregoing results reduce
to those obtained in (16).

As a second example we consider the torsion of a cylindrical bar containing a semi­
circular longitudinal groove with a radial crack at its bottom. Assuming that the trans­
verse dimensions of the bar is large compared to the radius of the groove and the depth
of the crack, the problem may be considered one of longitudinal shear of a semi-infinite
medium or an infinite medium with a circular hole and two symmetric radial cracks
(Fig. 6). If only the symmetric loading is considered the stresses for homogeneous medium

• The minus sign in (32) and (33) is due to the sign convention of displacement and has no significance in
applications.
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y

-4 -0 -, 0 a x
t

-
FIG. 6. Bonded plane with cIrcular cavity and radial cracks.

(35)

and dissimilar media will be the same. Without a loss in generality, taking the diameter
of the circle to be unity, the mapping function and its derivative are given by

'1 = w(O = 1£(+~((2_1)]

(
2~(11_t2)' ItI < 1

Iw'(()1 =

~[1+ ~(t;-ljl ItI > 1.

If ±a and ±a correspond to the crack tips and ends of the plastic zone in the real medium
(Fig. 6), the corresponding quantities in the equivalent shear problem, (i.e. in the ( plane)
will be

b = 4a
2

+1
40' f3 = 4IX

2 +1
4a'

4r2 + 1
t=--.

4r
(36)

(37)

First consider the elastic problem with cracks extending to ±IX and external loads con­
sisting of the shear stress at infinity .'fs". = 1"2:.". = qo. The solution of equivalent shear
problem is given by the previous example (where f3 replaces a in (27». From (21), (27),
(35) and (36) the contact stress, and the stress intensity factor are obtained as

_ aqo(16r4 -1)
• 1".s(r) = 4r2[(16a2r2 -1)(r2 _ ( 2)Jl'

k
1

= qo (16IX
4 -1)t.

4a 2ex

Note that for the case of a hole without any cracks, ex = ! and the contact stress and stress
concentration factor become

T 1S".(!) = 2.
qo

Considering now the shear problem with the external loads T1S<7 = .is<7 = TO (To being the
yield stress in shear) acting on the part of the crack surface a < Irl < ex, in the equivalent
shear problem the corresponding surface tractions will be (see: (21»

g1(t) = g2(t) = Tolw'(t)1 b < ItI < f3
= 0 ItI < b.
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Observing that for this loading condition p(t) and M(O are zero, from (15) we obtain

"Co {[ 2( (n . b (f32_b2)t)
G(O = - 2nlJ.l i ,J((2_f32) 2-arcsmp+arctan b2-1

(w+~~-m)t (~+~~+m)t
+ arctan (13 - b)(( + 13) - arctan (13 - b)(( - (3)

2( ({f32 - b
2
)W -l»)tl }

-,J((2_1)arctan (b2-l)W-f32) J

from which the contact stress and the stress intensity factor are found to be

_ "Clyz(t) "Co,J(t2-1) { 2t [n . b
!l".(r) = Iw/(t)1 = -n[t+,J(t2-1)] ,J(t2_f32) 2-arcsInp

(
132

- b
2)tJ f(f3 +b)(t - (3)Jt

+ arctan b2 -1 + arctan L(f3 - b)(t + (3)

[
(f3+b)(t+f3>lt 2t [(f32-b2)(t2-1>lt}

-arctan ~-b)(t-P)J ,J(t2_1)arctan (b2-1)(t2-f32jJ

"Co.J(16ex4 -1){~_ . ex(l + 4a2
) [(ex2

- a2)(16ex2a2.-1)]t}
k2 = 4nex,J(2ex) 2 arcSlna(1+4ex2/arctan ex(4a2 -1) .

The condition that for the elastic-plastic deformation k = k1 + k2 = 0 gives the following
equation which determines the unknown constant ex

qo _ !{~_ . cx(4a2 + 1) [(ex2
- a2)(16ex2a2 -l.)]t} (38)

"Co - 11: 2 arcsm a(4ex2 + 1) + arctan ex(4a2 -1) .

If there are no radial cracks emanating from the circle, a = t and (38)can be solved
for ex explicitly, giving

1 nqo
ex = "!tan­

2"Co

where (X -! is now the depth of the plastic zone in the slip plane y = 0 around a circular
hole of radius !-

Further results and examples where the elastic and elastic-plastic solutions are
dependent on the shear moduli of the adjoining media are given in the Appendix.

5. DISCUSSION AND CONCLUSIONS

The results of this paper are intended for use in the fracture of bonded dissimilar
materials with cracks or cavities under anti-plane shear. The fracture criterion proposed
in [16] and [17] namely that the fracture will begin when the "displacement" at the root
of the notch reaches to a critical value, may also be used for bonded materials. For small
values of qo/"Co or pia, p and a being the plastic zone size and the half crack length, this
criterion is equivalent to the Irwin-{)rowan modification of Griffith theory. In the
Griffith theory for anti-plane shear the criterion is



460 F. ERDoGAN

qo = (~:r or k = e~yr= constant (39)

where y is the specific surface energy and the criterion may be stated as "when the stress
intensity factor reaches to a critical value, which is a material parameter, the fracture will
begin". In the Irwin-Orowan modification of the theory 2y stands for the (plastic) work
required to increase the area of the crack by a unit amount. On the other hand (34) may
be rewritten as

qo = (~ 2Jl.IJl.2 'Coh(a))-!- or k = (~ 2Jl.IJ.t2 'Coh(a))-!-.
na J.tl + J.t2 2 n J.tl + J.t2 2 (40)

Comparison of (39) and (40) indicates that if one assumes a critical value of h(a) to be a
material parameter the two theories are identical, 'Coh(a) corresponding to the plastic
work and (2Jl.IJ.tl)/(J.tl +J.t2) replacing J.t in the Irwin-Orowan extension of Griffith theory.
It should be noted that the second equation in (40) is the more general statement of the
criterion and the stress intensity factor k in addition to being linearly dependent on the
external loads may also depend on J.tl and J.t2. The critical notch-root-displacement
criterion also demonstrates the importance of the magnitudes of J.tl and J.t2 in the fracture
along the interface. From (33) it is seen that if J.tl' J.t2 are very high a large plastic zone
will be required for h(a) to reach a critical value, which means that qo will approach 'Co.

Of course in the limiting case of bonded rigid media there will be no notch effect.
From (19) it is seen that in bonded dissimilar media with cracks the singularities are

ordinary branch points and the stresses are of the form

'Cij = p--!-A iP),J.tl,J.t2)

where p, 8 are the polar coordinates in xy-plane with origin at the tip and Aij are bounded
functions. On the other hand it was shown that [6] the singularities caused by the xy­
components of the external loads (i.e. plane strain or generalized plane stress) are essential
singularities and stresses are of the form

(lij = p--!-Bij(8) sin (YIOg~ )+P--!-CiJ{8) cos (YIOg~)

where Y is a bi-elastic constant and a is a finite length. It is seen that even though the
strength of singularities is the same for both loading conditions, the oscillation pheno­
menoQ. encountered in plane extensional problems is not observed in longitudinal shear.

In anti-plane problems for dissimilar media, if the external loads are symmetric with
respect to xz-plane, the contact stress is independent of the shear moduli meaning that,
unlike the results found for plane problems [6, 7], the stresses and displacements in one
medium are unaffected by the elastic properties of the other. However, this is not the case
if the symmetry does not exist (see the examples (b), (d) and (e) in the Appendix).

The solutions given by (9) and (15) and their variations for the case of cavities apply
without modification to the bonded quarter plane problems, (x > 0), and hence to the
torsion of cylindrical bars transverse dimensions of which are large compared to the
dimensions of the imperfections. The solution of this problem is the same as that of
bonded semi-infinite media where both the external loads and the geometry are symmetric
with respect to the yz-plane. If there are external loads acting on the surfaces of the quarter
planes, x = 0, the problem may be solved by using the results similar to those of the
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example (d) in the Appendix as the Green's function (where T is twice the magnitude of
the load acting on the quarter plane).

The elastic results found in this paper are applicable without modification to the prob­
lem of heat conduction in dissimilar materials with the same geometry where w, 't" and
J1. directly correspond to the temperature distribution, the heat flux and the coefficient of
heat conduction, respectively.

Similarity of the results· of elastic-plastic analysis in anti-plane and plane problems
leads one to cautiously conjecture that in the absence of solutions for plane problems
(which are considerably more difficult), the solutions for anti-plane problems with the
same geometry may be used for rough estimates of stress intensity factors and plastic
zone sizes in the symmetric mode of plane problems.
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APPENDIX

Further Examples

(a) Single bond, L = (- a, a), Tat oc (Fig. 7)
T T

°t(O = -nJ1.t-J((2_ a2)' 't"lyz(t) = n-J(a2-t2),

(b) L = (- a, a), 't"fxz = Pt, 't"rxz = P2

01(()=Pl+~(P2_Pl)[1_ ( J
J1.1 J1.1 + J1.2 J1.2 J1.1 -J((2 _a2)

* In fact the expression for the plastic zone size given by (29) is identical to that obtained in [23] for the plane
extensional problems which is the only available solution using a similar procedure. See also the footnote in the
Appendix.
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FIG. 7 Bonded plane with edge notches.

_ ( IltPZ -llzPt t
'ly: t) = + J( Z t Z)'III 112 a -

ItI < a.

For '0 = ib and yield stress in shear = '0' fJ. is found from

J(aZ +bz)log{[J(aZ-aZ)+a]/a}

b+ (Iltlllz)J(rxz +bZ
)

FIG. 8. Bonded plane with edge notches under concentrated load.

(e) L = (-a, a), gl(t) = T(j(t-to), gz(t) 0, wz(co) = 0, (to> a)
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T [1 1 /1z-J(t6-aZ) ]°1(0 = n(J1t + /1z) - (- to + -JW - aZ) /11(( - to)-J((Z - aZ)

't lyz(t) = /11 T [1 + /1z -J(t6 - azn
n(/11 +/1z)-J(aZ-tZ) /11 to-t J

(f) Two bonds, L = (-b, -a) + (a, b), Tat 00

-T(°1(0 = n/11[((Z-aZ)((Z-bZ)Jt

Tt
't lyz(t) = n[(tZ _ aZ)(bZ _ tZ)]t'

(+,Itl>b

-,Itl<a)

Stress intensity factors:*

[
bZE(m) zl 1

k(a) = qo K(m) -a J-J[2a(bZ_aZ)]

k(b) = qob
Z[1- ~~~jJ-J[2b(bIZ _aZ)] .

(h) Circular cavity of radius !, concentrated shear loads += Q at ! e± ;90

2Q

n(1 +4rZ-4r cos (0)'
(lrl >1)..

(i) Elliptic cavity, 'tlyz = 't2'yz = qo

(t > 1)

m = (a-b)/(a+b), a, b semi-axes, a is normalized to be (1+m)/2,

I-m
ret) = t 2[t + -J(tZ-1)] .

Stress concentration factor,

U) Elliptic cavity with cracks along a < Irl < c, 't~z = 't2'yZ = qo (Fig. 9)
• Note that k(a) is always larger than k(b) and observe the similarity (in fact, for the symmetric mode, the

identity) of the results to those for the plane problem (24).
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_ 2Qot[t+J(t2-1)]J(t2 -1)

T IC7S(r) = {1-m+2[(t+.J(t2-1)].Jt2-1}.J(t2-,/), t> y

1-m 1-m
r(t) = t 2[t+ .J(t2-1)]' C = y - 2[y + .J(y2 -1)]"

•

----(==~:=
ib

a c

FIG. 9. Bonded plane with elliptic cavity and cracks.

(k) Torsion of a cylindrical bar with a V-shaped groove of angle nl2 where a is small
compared to transverse dimensions (Fig. 10)

•

FIG. to. Bonded half-plane with V-shaped groove and crack.

(t> b)

b = 2aJ(~) ~~:~,
In the neighborhood of the apex, r = a/.J2:
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If the bar contains a crack along a/J2 < r < c:

_ qoJt (t2
- b2)t

't 1<7s(r) = J(t2 --;2) ' t > y

a fY Jtdt
c = J2 + b (t2 _b2)t·

Stress intensity factor:

(Received 26 August 1965)

Resume-Le probleme de deux milieux semi-infinis attaches, ayant des proprietes differentes, contenant des
fissures ou cavites sur la tranche et sujets ades forces de cisaillement longetudinaux de divers cotes, a ete consi­
dere. La solution elastique dans laquelle les composants-z du forces exteme sont uniquement pris en considera­
tion, complete Ie probleme de resistance plane oil les forces extemes se trouvent dans un plan-xy. Employant
I'approche de la theorie des dislocations aux deformations plastiques, une simple technique basee sur la thCorie
elastique est developpee, alin d'estimer la taille de la zone plastique au voisinnage de la fissure et des cavites.

Quelques exemples sont expliques et une Iiste de solutions donnee dans I'annexe.

Zusammenfl.SllUlll-Das Problem von zwei verbundenen einseitig-unbegrenzten Medien mit verschiedenen
Eigenschaften, welche Risse oder Aushohlungen an der Grenztliiche enthalten, und welche zu Liingsschubbelas­
tungen in verschiedenen Wegen ausgesetzt sind, wird untersucht. Die elastische Losung in welcher nur die
z-Komponenteder iiusseren Belastung in Betracht gezogen wird, ergiinzt das F1iichenbeaspruchungs Problem,
in welchem die iiusseren Belastungen in der xy-F1iiche Iiegen. Unter Verwendung der Anniiherung der Verset­
zungs theorie zu plastichen Verformungen, ein einfaches Verfahren, welches auf der elastischen Theorie beruht
wird entwicfelt, um die Grosse der plastischen Zone in der Niihe von Rissen und Aushohlungen zu schiitzen.
Einige Beispiele sind ausgearbeitet und eine Liste von Losungen ist im Anhang gegeben.

AficTpaKT-PaCCMaTpHBaIOTCli pa3JlH'IHble B03MOllCHOCTH np06J1eMbl ,l1ByX CBlI3llHHblX ceMH-6ecKoHe'lHblX

MaTepHaJIOB C pa3J1H1fHblMH CBOICTBaMH, CO,l1epllCalUHx TpelUHHbl HJlH nOJ1OCTH Ha noaepxHocTH pa3,l1eJIa

H no,u.aeprHyTblx Harpy3KaM npo,l10JlbHOrO C,u,BHra. Ynpyroe PeTeHHe, B KOTOpoM npHHlIT BO BHHMaHHe

TOJIhICO Je,IJ;-ICOMnOHeHT BHeWHHX Harpy30K, ,u,onOJIHlIeT np06J1eMY ,u,*PMau,HH DJlOCKOCTH, r,ll.e BHelUHHe

Harpy3ICH J1ellCaT B HKC-DJlOCICOCTH. npHMeHlIli no,u,xo,u, TeopHH ,u,HCJIOKa~HH ,l1J1lI DJlaCTWiCCKHX ,u,e4!op­

Ma~HI, pa3pa6oTaHa npOCTali TexHIIKa, OCHOBaHHali Ha reopHH yopyrOCTH J1JIli y'lha BeJIH'IHHbi
nJlacTH1fHoll 30HbI B6JlH3H TpelUHH H nOJlOCTeD. Bblpa60TaHbl HeKoTopbie npHMepbl H B npHJ10llCeHHH ,IJ;aH

COMCOIC peweHHD.


